If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2.5x^2+12x-3.95=0
a = -2.5; b = 12; c = -3.95;
Δ = b2-4ac
Δ = 122-4·(-2.5)·(-3.95)
Δ = 104.5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-\sqrt{104.5}}{2*-2.5}=\frac{-12-\sqrt{104.5}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+\sqrt{104.5}}{2*-2.5}=\frac{-12+\sqrt{104.5}}{-5} $
| -x+1=2x-2-3x | | 5x+2=2x+16 | | 6=7x-36 | | 6=7x36 | | 4x-7=1-6x | | 6f-1+2f=19 | | x=(2x+6)(3x-15)=0 | | 30=7x-2 | | x/3=2x-1/ | | 8(3w+10)/3=8 | | 12=-12-5y | | 12+18x-7x+35=35=-8 | | y^2-24y+72=0 | | 4/8=8/a | | (4x+11)+(x+14)=180 | | 0.3x+0.7x=0.85x | | 39=12-5y | | 4x2-9x-4=-11x | | 11=14-9y | | 16x2+4x-10=8+7x2 | | 7-4(3x-1)=(5-4x)-2 | | 4n2=125-n2 | | 3y=12-3y | | 6b2+14b-143=7b | | 2x2-3=2-3x2 | | 2x2+3x-45=-6x | | 3x2-13x+2=4-12x | | 2a2-2+2a=2a | | 32=16+8y | | 3x-1/5=2x+1/3 | | 6x-28=5x-3 | | 6n2+12n-14=4 |